Mapping Sparse Matrix-Vector Multiplication on FPGAs

نویسندگان

  • Junqing Sun
  • Gregory Peterson
  • Olaf Storaasli
چکیده

Higher peak performance on Field Programmable Gate Arrays (FPGAs) than on microprocessors was shown for sparse matrix vector multiplication (SpMxV) accelerator designs. However due to the frequent memory movement in SpMxV, system performance is heavily affected by memory bandwidth and overheads in real applications. In this paper, we introduce an innovative SpMxV Solver, designed for FPGAs, SSF. Besides high computational throughput, system performance is optimized by minimizing and overlapping I/O operations, reducing initialization time and overhead, and increasing scalability. The potential of using mixed (64-bit, 32-bit) data formats to increase system performance is also explored. SSF accepts any matrix size and easily adapts to different data formats. SSF minimizes resource costs and uses concise control logic by taking advantage of the data flow via innovative floating point accumulation logic. To analyze the performance, a performance model is defined for SpMxV on FPGAs. Compared to microprocessors, SSF has speedups up to 20x and depends less on the sparsity structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Matrix-Vector Multiplication on FPGAs

Floating-point Sparse Matrix-Vector Multiplication (SpMXV) is a key computational kernel in scientic and engineering applications. The poor data locality of sparse matrices signicantly reduces the performance of SpMXV on general-purpose processors, which rely heavily on the cache hierarchy to achieve high performance. The abundant hardware resources on current FPGAs provide new opportunities to...

متن کامل

High performance sparse matrix-vector multiplication on FPGA

This paper presents the design and implementation of a high performance sparse matrix-vector multiplication (SpMV) on fieldprogrammable gate array (FPGA). By proposing a new storage format to compress the indexes of non-zero elements by exploiting the substructure of the sparse matrix, our SpMV implementation on a reconfigurable computing platform with a multi-channel memory subsystem is capabl...

متن کامل

Reconfigurable Sparse Matrix-Vector Multiplication on FPGAs

executing memory-intensive simulations, such as those required for sparse matrix-vector multiplication. This effect is due to the memory bottleneck that is encountered with large arrays that must be stored in dynamic RAM. An FPGA core designed for a target performance that does not unnecessarily exceed the memory imposed bottleneck can be distributed, along with multiple memory interfaces, into...

متن کامل

Sparse Matrix-vector Multiplication on Nvidia Gpu

In this paper, we present our work on developing a new matrix format and a new sparse matrix-vector multiplication algorithm. The matrix format is HEC, which is a hybrid format. This matrix format is efficient for sparse matrix-vector multiplication and is friendly to preconditioner. Numerical experiments show that our sparse matrix-vector multiplication algorithm is efficient on

متن کامل

An FPGA Drop-In Replacement for Universal Matrix-Vector Multiplication

We present the design and implementation of a universal, single-bitstream library for accelerating matrixvector multiplication using FPGAs. Our library handles multiple matrix encodings ranging from dense to multiple sparse formats. A key novelty in our approach is the introduction of a hardware-optimized sparse matrix representation called Compressed Variable-Length Bit Vector (CVBV), which re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007